Journal of Organometallic Chemistry, 288 (1985) 1–12 Elsevier Sequoia S.A., Lausanne – Printed in The Netherlands

STRUKTUR UND BINDUNGSVERHÄLTNISSE VON 1,4-DITHIA-2,6-DIAZA-3,5-DIBORINANEN

CARL HABBEN, ANTON MELLER*, MATHIAS NOLTEMEYER und GEORGE M. SHELDRICK Institut für Anorganische Chemie der Universität Göttingen, Tammannstrasse 4, D-3400 Göttingen (B.R.D.) (Eingegangen den 8. November 1984)

Summary

1,3-Disubstituted sulfur diimides react with 3,5-dialkyl- and 3,5-diaryl-1,2,4-trithia-3,5-diborolanes, respectively, to give 1,4-dithia-2,6-diaza-3,5-diborinanes. The ¹H, ¹¹B, ¹³C, ¹⁴N, ²⁹Si NMR and mass spectra and the results of X-ray analyses of crystalline 2-t-butyl-6-(1,3-dimethyl-1,3,2-diazaborolidinyl)-3,5-dimethyl- and 2-tbutyl-6-(2,6-dimethylphenyl)-3,5-diphenyl-1,4-dithia-2,6-diaza-3,5-diborinanes are reported and correlated.

Zusammenfassung

1,3-Disubstituierte Schwefeldiimide reagieren mit 3,5-Dialkyl- bzw. 3,5-Diaryl-1,2,4-trithia-3,5-diborolanen unter Bildung von 1,4-Dithia-2,6-diaza-3,5-diborinanen. ¹H-, ¹¹B-, ¹³C-, ¹⁴N-, ²⁹Si-NMR-, Massenspektren und die Ergebnisse der Röntgenstrukturuntersuchungen an den kristallinen 2-t-Butyl-6-(1,3-dimethyl-1,3,2diazaborolidinyl)-3,5-dimethyl- und 2-t-Butyl-6-(2,6-dimethylphenyl)-3,5-diphenyl-1,4-dithia-2,6-diaza-3,5-diborinan werden mitgeteilt und korreliert.

Einleitung

Bisher bekanntgewordene Umsetzungen des 1,2,4-Trithia-3,5-diborolans mit vielen Substanzklassen führten zur Isolierung und Charakterisierung neuer Bor-Heterocyclen [1-6]. Einzelne Reaktionen erlauben den Zugang zu cyclischen borhaltigen Schwefel-Stickstoff-Systemen [1,2]. Trimethylsilylsubstituierte Schwefeldiimide sind bekannte Ausgangsverbindungen zur Synthese von acyclischen und cyclischen Schwefel-Stickstoff-Verbindungen [7-10]. Kürzlich ausgeführte Umsetzungen unterschiedlich substituierter 1,2,4-Trithia-3,5-diborolane mit symmetrischen und unsymmetrischen Schwefeldiimiden führten nach Reduktion des Schwefels unter Erhaltung seiner Koordinationszahl zwei zur 1,3-Addition des Schwefeldiimids an die B-S-B-Sequenz des Bor-Schwefel-Ringsystems zu Derivaten des bisher unbe-

	+ R ³ N == S == NR ²	R ³	$\sum_{B}^{N} \sum_{S}^{R^{2}} + \frac{1}{4} S_{8}$
(1)	(П)		(111)
Verb.	R ¹	R ²	R ³
IIIa	CH ₃	Si(CH ₃) ₃	Si(CH ₃) ₃
IIIb	CH ₃	t-C₄H ₉	$Si(CH_3)_3$
IIIc	CH ₃	$t-C_4H_9$	$t-C_4H_9$
IIId	CH ₃	Si(CH ₃) ₂ Cl	Si(CH ₃) ₂ Cl
IIIe	$N(C_2H_5)$,	Si(CH ₃) ₃	Si(CH ₃) ₃
IIIf	$N(C_2H_5)_2$	t-C₄H ₉	Si(CH ₃) ₃
IIIg	$N[Si(CH_3)_3]_2$	Si(CH ₃) ₃	Si(CH ₃) ₃

kannten 1,4-Dithia-2,6-diaza-3,5-diborinans [1].

Ergebnisse und Diskussion

Weitere Reaktionen des 3,5-Dimethyl-1,2,4-trithia-3,5-diborolans mit unsymmetrischen, aromatisch substituierten Schwefeldiimiden ergaben die neuen N-Aryl-1,4-dithia-2,6-diaza-3,5-diborinane IIIh und IIIi:

Auch gelingt nach analoger Umsetzung mit N-t-Butyl-N'-(1,3-dimethyl-1,3,2-diazaborolidinylschwefeldiimid) die Einführung des Diazaborolidinylrestes in das Dithiadiazadiborinansystem:

Neben 3,5-Dimethyl- und 3,5-Bis(dialkylamino)-1,2,4-trithia-3,5-diborolan reagiert auch 3,5-Diphenyl-1,2,4-trithia-3,5-diborolan mit Schwefeldiimiden wie N-(2,6-Dimethylphenyl)-N'-trimethylsilylschwefeldiimid unter Bildung des *B*-Aryl-substituierten 1,4-Dithia-2,6-diaza-3,5-diborinans:

(1111)

Mit der Synthese der Verbindungen IIIk und IIII gelang die Darstellung der ersten bei Raumtemperatur kristallinen 1,4-Dithia-2,6-diaza-3,5-diborinane.

¹H-, ¹¹B-, ¹³C-, ²⁹Si-NMR-Spektren

Bei 3,5-Dimethyl-1,4-dithia-2,6-diaza-3,5-diborinanen mit unterschiedlichen *N*-ständigen Substituenten ist auch bei den neu dargestellten Verbindungen IIIh–IIIk mit ¹H- und ¹³C-NMR-Spektren eine Unterscheidung zwischen unterschiedlich gebundenen Bor-Methylgruppen möglich. Das vorhandene Vergleichsmaterial [1] erlaubt eine genaue Zuordnung gefundener δ -Werte (ppm) auf beide *CH*₃-Gruppen (siehe Tab. 1).

$$R^3$$
 N N R^2
 $|$ $|$ $|$
 $(R^{12})H_3C$ R^3 $CH_3(R^{11})$

TABELLE 1 ¹H- UND ¹³C-NMR-SPEKTREN AUSGEWÄHLTER VERBINDUNGEN (δ (ppm) B–*CH*₃)

Verb.	R ²	R ³	¹ H		¹³ C	
			R ¹¹	R ¹²	R ¹¹	R ¹²
IIIh	C ₆ H ₅	Si(CH ₃) ₃	0.87	0.63	8.33	6.40
IIIi	2,6-(CH ₃) ₂ C ₆ H ₃	$Si(CH_3)_3$	0.90	0.40	8.43	5.28
IIIk	t-C ₄ H ₉	B[N-CH ₂] ₂ CH ₃	0.69	0.95	5.7	10.7

Die ¹¹B- und ²⁹Si-NMR-Spektren der Verbindungen IIIh-IIII zeigen die jeweiligen Signale im erwarteten Bereich der chemischen Verschiebung. Die spektroskopischen Daten dieser Verbindungen sind in Tab. 4 zusammengefasst.

¹⁴N-NMR-Spektren

Nur die ¹⁴N-NMR-Spektren der unsymmetrischen Ausgangsschwefeldiimide IIi und IIk zeigten im Bereich für doppelt gebundenen Stickstoff zwei Signale. Der

Verb.	R ²	R ³	
IIa	Si(CH ₃) ₃	Si(CH ₃) ₃	- 54.2
Пр	$t-C_4H_9$	Si(CH ₃) ₃	- 68.2
IIc	$t-C_4H_9$	t-C ₄ H ₉	- 54.9
IId	Si(CH ₃) ₂ Cl	Si(CH ₃) ₂ Cl	- 58.6
IIh	C ₆ H ₅	Si(CH ₃) ₃	- 77.0
IIi	$2,6-(CH_3)_2C_6H_3$	Si(CH ₃) ₃	- 67.7 - 86.3
IIk	t-C ₄ H ₉	$ \begin{matrix} B[N-CH_2]_2 \\ CH_3 \end{matrix} $	66.5 86.9 331.2
IIm		B[N-CH ₂] ₂ CH ₃	- 89.5 - 330.8

TABELLE 2 14 N-NMR-SPEKTREN DER VERBINDUNGEN II (δ (ppm)) $R^3N{=}S{=}NR^2$

Vergleich der gemessenen δ -Werte (ppm) mit denen der symmetrischen Derivate IIa, IIc, IIh und IIm ermöglicht eine eindeutige Zuordnung. Die Vermessung unterschiedlich substituierter 1,4-Dithia-2,6-diaza-3,5-diborinane ergab nur ein Signal

TABELLE 3

¹⁴N-NMR SPEKTREN DER VERBINDUNGEN III (δ (ppm))

(11	[)			
Verb.	R ¹	R ²	R ³	
IIIa	CH ₃	Si(CH ₃) ₃	Si(CH ₃) ₃	- 269.2
IIIb	CH ₃	$t-C_4H_9$	Si(CH ₃) ₃	- 259.9
IIIc	CH3	$t-C_4H_9$	t-C ₄ H ₉	- 216.3
IIId	CH3	Si(CH ₃) ₂ Cl	Si(CH ₃) ₂ Cl	- 257.0
IIIh	CH ₃	C ₆ H ₅	Si(CH ₃) ₃	- 258.0
IIIi	CH3	$2,6-(CH_3)_2C_6H_3$	Si(CH ₃) ₃	- 270.0
IIIk	CH3	t-C ₄ H ₉	$\begin{array}{c} \mathbf{B[N-CH_2]_2}\\ \downarrow\\ \mathbf{CH_3}\end{array}$	- 280.2 - 320.5

im Bereich zwischen -216 bis -270 ppm. Bei IIIk kann zwischen den N-Ringgliedern des 1,4-Dithia-2,6-diaza-3,5-diborinans und denen des 1,3,2-Diazaborolidinylrestes durch Vergleich mit IIk und IIm unterschieden werden.

Ein Vergleich der erhaltenen δ -Werte der Schwefeldiimide II mit denen der 1,4-Dithia-2,6-diaza-3,5-diborinane III zeigt jedoch deutlich eine Änderung der Bindungsordnung des Stickstoffs beim Übergang von II nach III, wie aus den Tabellen 2 und 3 ersichtlich ist.

Strukturdaten

Die für die 1,4-Dithia-2,6-diaza-3,5-diborinane IIIk und IIII gefundenen Bor-Schwefel-Bindungsabstände von 183.0–184.2 pm sind deutlich länger als die entsprechenden Werte der Metathioborsäure (180.3 pm), des Trithiadiborolans (180.3 pm), des Bis(dimethylboryl)disulfans (180.5 pm) [11], des 3,4,5-Trimethyl-1,2-dithia-4-aza-3,5-diborolidins (181.3(6) pm) und des 2,3,5,6-Tetramethyl-1-thia-3,4-diaza-2,5-diborolidins (181.0(10) bzw. 178.9(14) pm) [12]. Längere Bor-Schwefel-Bindungen wurden für ein Addukt des 4,6-Dibrom-1,2,3,5-tetrathia-4,6-diborinans mit 1,3,2-Trimethyl-1,3,2-diazaborolidin gefunden, in dem ein B_2S_4 -Sechsring in Sesselform vorliegt (186.0(13), 189.4(12), 191.0(12), 193.0(13), 203.8(12) pm) [13].

In den untersuchten 1,4-Dithia-2,6-diaza-3,5-diborinanen IIIk und IIII ergaben sich wegen ungleicher Substitution in 2,6-Stellung unterschiedliche B-N-Bindungsabstände (141.3 und 142.6 pm für IIIk bzw. 141.9 und 143.5 pm für IIII). Die Einführung des 1,3,2-Diazaborolidinylrestes als N-ständigen Substituenten führt zum Bor-Stickstoff-System IIIk mit vier verschiedenen B-N-Bindungslängen. Für diese Verbindung wurden im 1,3,2-Diazaborolidinylrest (mit 139.6 bzw. 138.8 pm) kürzere B-N-Abstände gefunden als im 1,4-Dithia-2,6-diaza-3,5-diborinan. Demgegenüber führt die Verdrillung des Substituenten zu einer Schwächung der exocyclischen B-N-Bindung und damit zu einer Verlängerung des B-N-Abstandes (auf 147.4 pm). Röntgenstrukturuntersuchungen an einer Reihe von Borazinen [14] lieferten, je nach Substitution dieses B-N-Systems, B-N-Bindungsabstände zwischen etwa 139 (2,4,6-Trimethylborazin) und 144 pm (Borazin 143.55 pm). In den B-N-S-Fünfringsystemen 3,4,5-Trimethyl-1,2-dithia-4-aza-3,5-diborolidin und 2,3,4,5-Tetramethyl-1-thia-3,4-diaza-2,5-diborolidin betragen die B-N-Abstände 143.5(6) pm bzw. 137.4(16) und 139.6(11) pm [12]. In Triaminoboranen wurden mittlere B-N-Abstände von ca. 142 (141.5 pm für 1,5,9-Triaza-1,3-boracyclotridecan) bis 144 pm (143.9 pm für Tris(dimethylamino)boran) gefunden. In Tris(methylanilido)boran [15] erfolgt durch die stärkere Verdrillung der R2NB-Ebene gegen die BN3-Ebene eine Bindungsaufweitung. Der B-N-Bindungsabstand wurde zu 148.8(3) pm bestimmt.

In den Verbindungen IIIk und IIII liegt der durchschnittliche Schwefel-Stickstoff-Bindungsabstand bei ca. 172 pm. Dies entspricht dem Wert einer formalen N-S-Einfachbindung in der N-S-N-Brücke [16–18]. Röntgenstrukturuntersuchungen bzw. Elektronenbeugungsexperimente liefern für acyclische, symmetrisch substituierte Schwefeldiimide N-S-Bindungslängen zwischen 151 und 158 pm [18]. Die Kristall- und Molekülstruktur des SNB-Achtringes 1,1,5,5-Tetramethyl-3,7-diphenyl- $1\lambda^{6},5\lambda^{6}$ -dithia-2,4,6,8-tetraza-3,7-diborocin ergab N-S-Bindungsabstände von 149.6–155.1 pm [19]. Aufgrund anderer Bindungsverhältnisse ergeben sich in Dipiperidindisulfid [20] und in Bis-(2,2,6,6-tetramethylpiperidyl)disulfid [18] N-S-Abstände von 168.7 bzw. 169.8 pm.

Fig. 1. Die Molekülstruktur von IIIk.

Fig. 2. Die Molekülstruktur von IIII.

Fig. 3. Die Geometrie des 1,4-Dithia-2,6-diaza-3,5-diborinanrings in IIIk.

Die Molekülstrukturen von IIIk und IIII sind in den Figuren 1 und 2 wiedergegeben; in beiden Verbindungen zeigt der Dithiadiazadiborinanring eine wannenförmige Struktur (siehe Fig. 3). Die beiden Ebenen S(1)N(6)B(5)S(4) und S(1)N(2)B(3)S(4) sind gegeneinander um einen Winkel von 52.6 (IIIk) und 48.9° (IIII) geneigt. Ein Modell fitting dieser Ringe in IIIk und IIII ergibt eine mittlere Standardabweichung der Atomlagen von 3.9 pm, d.h. die B-N-S-N-B-S-Ringe in beiden Verbindungen gleichen einander völlig.

Beschreibung der Versuche

C-, H-, B- und N-Bestimmungen: Mikroanalytisches Labor Beller, Göttingen. NMR-Spektren (Solvens/Standard): ¹H- (H₂CCl₂/TMS int.): Bruker 60 E, ¹¹B-(CDCl₃/BF₃ · O(C₂H₅)₂ ext.), ¹³C-, ²⁹Si- (CDCl₃/TMS int.), ¹⁴N- (CDCl₃/H₃CNO₂ ext.): Bruker WP 80 SY. Massenspektren: 70 eV, Varian-MAT-CH5 Spektrometer. Molekülpeaks durch Feldionisation gesichert.

Alle Reaktionen wurden in N₂-Atmosphäre und getrockneten Lösungsmitteln ausgeführt.

Ausgangsverbindungen

3,5-Dimethyl(diphenyl)-1,2,4-trithia-3,5-diborolan [21], N-Phenyl-N'-trimethylsilyl-, N-2,6-Dimethylphenyl-N'-trimethylsilylschwefeldiimid [22] und N-t-Butyl-N'-(1,3-dimethyl-1,3,2-diazaborolidinyl)schwefeldiimid [23] wurden nach Literaturangaben hergestellt.

Die Darstellung der Verbindungen IIIa-IIIg wurde bereits in [1] beschrieben.

Darstellung der Verbindungen IIIh-IIII

Zu einer Lösung von 0.02 Mol (2.96 g) 3,5-Dimethyl-1,2,4-trithia-3,5-diborolan (für IIIh–IIIk) bzw. 0.01 Mol (2.72 g) 3,5-Diphenyl-1,2,4-trithia-3,5-diborolan (für IIIl) in 125 ml Tetrachlormethan wurden unter Rühren die Lösungen von 0.02 Mol des entsprechend substituierten Schwefeldiimids in 50 ml Tetrachlormethan (4.21 g N-Phenyl-N'-trimethylsilyl- für IIIh, 4.77 g N-(2,6-Dimethylphenyl)-N'-trimethylsilyl- für IIIh, 4.28 g N-t-Butyl-N'-1,3-dimethyl-1,3,2-diazaborolidinylschwefeldiimid für IIIk bzw. nur 0.01 Mol (2.38 g N-2,6-Dimethylphenyl-N'-trimethylsilylschwefeldiimid) getropft. Die Reaktionsmischung wurde etwa 20 h am Rückfluss gekocht. Die Produktisolierung erfolgte nach Abtrennung des Solvens im Vakuum bei IIIh–IIIk durch fraktionierte Destillation, im Fall von IIII durch fraktionierte Sublimation im Hochvakuum. Ausbeute bei IIIh–IIIk 42–53%, bei IIII ca. 27%. Die Strukturdaten dieser Verbindungen sind in Tab. 4, Siede- bzw. Sublimationspunkt in Tab. 5 enthalten.

Kristallstrukturanalysen

Alle Intensitäten sowie Gitterparameter wurden mit einem Stoe-Siemens AED-Vierkreisdiffraktometer im Bereich $2\theta < 45^{\circ}$, (Mo- K_{α} , λ 71.069 pm) vermessen. Absorptionskorrekturen waren unnötig.

IIIk: triklin, Raumgruppe $P\overline{1}$, a 820.1(3), b 854.9(3), c 1363.2(5) pm, a 83.07(3), β 81.10(3), γ 72.00(3)°, U 0.8953 nm³, Z = 2, D_c 1.105 Mg m⁻³, F(000) = 320, μ 0.277 mm⁻¹. Kristallgrösse 0.2 × 0.3 × 0.3 mm, 3164 Reflexe vermessen, davon 1774 unabhängige mit $F > 3\sigma(F)$ für alle Berechungen verwendet.

8

TABEL	.LE 4
-------	-------

SPEKTROSKOPISCHE DATEN (NMR: ¹H, ¹¹B, ¹³C, ¹⁴N, ²⁹Si (δ(ppm)); MS)

Verb.	MS m/z M ⁺ /Int. [Basispeak]		¹ H	¹³ C	¹¹ B	¹⁴ N	²⁹ Si
IIIh	294/34	Si(CH ₃) ₃	0.18 (s,9H)	1.56	51.5	- 258.0	13.99
	[73]	B-CH ₃	0.63 (s,3H)	6.40			
		B-CH ₃	0.87 (s,3H)	8.33			
		C ₆ H ₅	6.92-7.37 (br,5H)	(125.99 126.26 128.81 174.74			
IIIi	322/53	$Si(CH_3)_3$	0.24 (s,9H)	1.67	51.2	- 270.0	14.54
	[149]	B-CH ₃	0.40(s,3H)	5.28			
		B-CH ₃	0.90 (s,3H)	8.43			
		$C_6H_3(CH_3)_2$	2.16 (s,6H)	19.31			
		$C_6H_3(\mathrm{CH}_3)_2$	7.05 (s,3H)	$ \begin{pmatrix} 126.43 \\ 128.27 \\ 134.36 \\ 146.08 \end{pmatrix} $			
IIIk	298.37	B-CH ₃	0.69 (s,3H)	5.7	50.8	-280.2	-
	[136]	B-CH ₃	0.95 (s,3H)	10.7	27.1	-320.5	-
		t-C4H	1.31 (s,9H)	31.62	Int. 2/1		
		N-CH ₃	2.50 (s,6H)	50.05			
		$N-CH_2$	3.23 (s,4H)	60.70			
IIII	446/22	Si(CH ₃) ₃	-0.08 (s,9H)	1.80	51.5		14.85
	[151]	$C_6H_3(CH_3)_2$	2.15 (s,6H)	19.66			
		$ \begin{array}{c} C_6 H_3 (CH_3)_2 \\ C_6 H_5 \end{array} \right\} $	6.38-7.31 (br,13H)				

IIII: rhomboedrisch, Raumgruppe $R\overline{3}$ auf hexagonalen Achsen, *a* 3604.7(8), *c* 1011.6(4) pm, *U* 11.384 nm³, *Z* = 18, *D*_c 1.172 Mg m⁻³, *F*(000) = 4248, μ 0.260 mm⁻¹. Kristallgrösse, $0.7 \times 0.4 \times 0.3$ mm, 5371 Reflexe vermessen, davon 2295 unabhängige mit $F > 3\sigma(F)$ für alle Berechnungen verwendet.

TABELLE 5

Verb.	Sdp. (a)	Bruttoformel	Analyt. Daten (Gef. (ber.) (%))			
	Subl. Pkt. (b) (°C/2×10 ⁻³ mbar) Schmp. (c)	(MolGew.)	C	н	В	N
IIIh	123 (a)	$C_{11}H_{20}B_2N_2S_2S_1$	44.52	6.77	8.07	9.20
IIIi	132 (a)	(294.13) $C_{13}H_{24}B_2N_2S_2S_i$ (322.19)	(44.92) 47.07 (48.46)	(0.83) 7.10 (7.51)	(7.33) 6.82 (6.71)	(9.32) 7.88 (8.69)
IIIk	127 (a) 56 (c)	$C_{10}H_{25}B_3N_4S_2$ (297.90)	40.30 (40.32)	8.32 (8.46)	10.31 (10.89)	18.04 (18.81)
IIII	150 (b) 98 (c)	$C_{23}H_{28}B_2N_2S_2S_i$ (446.33)	61.88 (61.89)	6.20 (6.32)	5.40 (4.84)	5.90 (6.28)

TABELLE 4

Verb.	MS m/z M ⁺ /Int. [Basispeak]		'Η δ [ppm]	¹³ C	¹¹ B	¹⁴ N	²⁹ Si
IIIh	294/34	Si(CH ₃) ₃	0.18 (s,9H)	1.56	51.5	- 258.0	13.99
	[73]	B-CH ₃	0.63 (s,3H)	6.40			
		B-CH,	0.87 (s,3H)	8.33			
		C ₆ H ₅	6.92–7.37 (br,5H)	(125.99 126.26 128.81 174.74			
IIIi	322/53	Si(CH ₃) ₃	0.24 (s,9H)	1.67	51.2	- 270.0	14.54
	[149]	B-CH ₃	0.40(s,3H)	5.28			
		B-CH ₃	0.90 (s,3H)	8.43			
		$C_6H_3(CH_3)_2$	2.16 (s,6H)	19.31			
		$C_6H_3(CH_3)_2$	7.05 (s,3H)	$\begin{pmatrix} 126.43 \\ 128.27 \\ 134.36 \\ 146.08 \end{pmatrix}$			
IIIk	298.37	B-CH ₃	0.69 (s,3H)	5.7	50.8	- 280.2	_
	[136]	B-CH ₁	0.95 (s,3H)	10.7	27.1	- 320.5	-
		t-C₄H ₉	1.31 (s,9H)	31.62	Int. 2/1		
		N-CH ₃	2.50 (s,6H)	50.05			
		N-CH ₂	3.23 (s,4H)	60.70			
IIII	446/22	Si(CH ₃) ₃	-0.08 (s,9H)	1.80	51.5	-	14.85
	[151]	$C_6H_3(CH_3)_2$	2.15 (s,6H)	19.66			
		$\left.\begin{array}{c} C_6H_3(CH_3)_2\\ C_6H_5\end{array}\right\}$	6.38–7.31 (br,13H)				

SPEKTROSKOPISCHE DATEN (NMR: ¹H, ¹¹B, ¹³C, ¹⁴N, ²⁹Si (δ(ppm)); MS)

IIII: rhomboedrisch, Raumgruppe $R\overline{3}$ auf hexagonalen Achsen, *a* 3604.7(8), *c* 1011.6(4) pm, *U* 11.384 nm³, *Z* = 18, *D_c* 1.172 Mg m⁻³, *F*(000) = 4248, μ 0.260 mm⁻¹. Kristallgrösse, $0.7 \times 0.4 \times 0.3$ mm, 5371 Reflexe vermessen, davon 2295 unabhängige mit *F* > 3 σ (*F*) für alle Berechnungen verwendet.

TABELLE 5

PRÄPARATIVE DATEN DER VERBINDUNGEN IIIh-IIII

Verb.	Sdp. (a)	Bruttoformel	Analyt. Daten (Gef. (ber.) (%))			
	Subl. Pkt. (b) (°C/2×10 ⁻³ mbar) Schmp. (c)	(MolGew.)	c	Н	В	N
lllh	123 (a)	C ₁₁ H ₂₀ B ₂ N ₂ S ₂ Si	44.52	6.77	8.07	9.20
		(294.13)	(44.92)	(6.85)	(7.35)	(9.52)
IIIi	132 (a)	$C_{13}H_{24}B_2N_2S_2S_1$	47.07	7.10	6.82	7.88
		(322.19)	(48.46)	(7.51)	(6.71)	(8.69)
IIIk	127 (a)	C10H25B3N4S2	40.30	8.32	10.31	18.04
	56 (c)	(297.90)	(40.32)	(8.46)	(10.89)	(18.81)
[]]]	150 (b)	$C_{23}H_{28}B_2N_2S_2S_1$	61.88	6.20	5.40	5.90
	98 (c)	(446.33)	(61.89)	(6.32)	(4.84)	(6.28)

10

TABELLE 8

BINDUNGSWINKEL (°) FÜR IIIk

$\overline{N(2)-S(1)-N(6)}$	102.6(2)	S(1)-N(2)-B(3)	114.9(4)
S(1)-N(2)-C(2)	114.3(3)	B(3)-N(2)-C(2)	130.5(4)
N(2)-B(3)-S(4)	118.3(4)	N(2)-B(3)-C(3)	128.9(5)
S(4) - B(3) - C(3)	112.9(4)	B(3) - S(4) - B(5)	105.0(3)
S(4)-B(5)-N(6)	119.2(4)	S(4)-B(5)-C(5)	118.3(5)
N(6)-B(5)-C(5)	122.6(5)	S(1) - N(6) - B(5)	115.5(4)
S(1) - N(6) - B(6)	116.0(3)	B(5) - N(6) - B(6)	128.6(4)
N(2)-C(2)-C(21)	107.8(4)	N(2)-C(2)-C(22)	110.3(4)
C(21)-C(2)-C(22)	108.9(6)	N(2)-C(2)-C(23)	109.5(5)
C(21)-C(2)-C(23)	111.4(5)	C(22)-C(2)-C(23)	109.0(4)
N(6)-B(6)-N(7)	125.5(6)	N(6) - B(6) - N(8)	125.9(5)
N(7)-B(6)-N(8)	108.6(6)	B(6)-N(7)-C(7)	110.8(5)
B(6)-N(7)-C(7')	130.5(6)	C(7)-N(7)-C(7')	118.1(5)
N(7)-C(7)-C(8)	105.0(5)	C(7)-C(8)-N(8)	104.5(6)
B(6)-N(8)-C(8)	110.9(5)	B(6)-N(8)-C(8')	130.9(5)
C(8)-N(8)-C(8')	117.3(5)		

TABELLE 9

ATOMKOORDINATEN (×10⁴) UND ISOTROPE THERMALPARAMETER ($pm^2 \times 10^{-1}$) Für IIII

Atom	x	y	Ζ	U ^a
S(1)	6213(1)	799(1)	7740(1)	47(1)
N(2)	6067(1)	1180(1)	7589(4)	45(2)
B(3)	6138(2)	1390(2)	6350(7)	52(4)
S(4)	6286(1)	1175(1)	4916(1)	56(1)
B(5)	6043(2)	597(2)	5223(6)	42(3)
N(6)	5922(1)	428(1)	6537(4)	41(2)
C(21)	5841(2)	1228(2)	8687(5)	46(3)
C(22)	5410(2)	1102(2)	8544(5)	47(3)
C(23)	5195(2)	1162(2)	9592(5)	63(4)
C(24)	5403(2)	1328(2)	10774(5)	73(4)
C(25)	5827(2)	1446(2)	10898(5)	72(4)
C(26)	6052(2)	1397(2)	9860(5)	56(3)
C(27)	5166(2)	906(2)	7275(5)	60(3)
C(28)	6521(2)	1530(2)	10037(6)	81(4)
C(31)	6099(2)	1793(2)	6084(5)	53(3)
C(32)	5958(2)	1863(2)	4870(5)	77(4)
C(33)	5935(3)	2225(3)	4601(8)	106(6)
C(34)	6050(3)	2537(3)	5530(9)	121(6)
C(35)	6194(2)	2483(2)	6726(7)	111(5)
C(36)	6209(2)	2116(2)	7005(6)	82(4)
C(51)	6001(2)	322(2)	3994(5)	40(3)
C(52)	6074(2)	- 19(2)	4080(4)	46(3)
C(53)	6082(2)	-245(2)	3009(5)	57(3)
C(54)	6025(2)	-126(2)	1771(6)	67(4)
C(55)	5948(2)	204(2)	1618(5)	65(4)
C(56)	5939(2)	431(2)	2716(5)	52(3)
Si(6)	5540(1)	-84(1)	7170(1)	46(1)
C(61)	5213(2)	- 20(2)	8468(5)	65(4)
C(62)	5844(2)	- 325(2)	7890(5)	70(4)
C(63)	5169(2)	- 435(2)	5867(5)	78(4)

^a Äquivalente isotrope U berechnet als ein Drittel der Spur des orthogonalen U_{ij} Tensors.

TABELLE 10

TABELLE IU	
BINDUNGSLÄNGEN	(pm) FÜR IIII

S(1) = N(2)	171.0(6)	S(1)-N(6)	172 2(4)	
N(2) = R(3)	1/1.0(0)	N(2) - C(21)	1/2.2(4) 143 7(7)	
B(3) - S(4)	184 4(8)	R(2) = C(21) R(3) = C(31)	145.7(7) 155.0(11)	
S(4) - B(5)	183.7(7)	B(5) - N(6)	143.6(7)	
B(5) - C(51)	155.0(9)	N(6) - Si(6)	178.1(4)	
C(21) - C(22)	139.1(8)	C(21) - C(26)	137.7(7)	
C(22) - C(23)	139.2(9)	C(22) - C(27)	151.8(7)	
C(23) - C(24)	137.9(8)	C(24) - C(25)	137.2(11)	
C(25)-C(26)	139.2(10)	C(26) - C(28)	151.6(9)	
C(31)-C(32)	140.1(9)	C(31) - C(36)	138.5(8)	
C(32)-C(33)	137.5(14)	C(33)-C(34)	136.2(12)	
C(34)-C(35)	136.8(13)	C(35)-C(36)	138.0(12)	
C(51)-C(52)	138.4(9)	C(51)-C(56)	140.1(7)	
C(52)-C(53)	136.5(8)	C(53)-C(54)	137.3(9)	
C(54)-C(55)	136.2(11)	C(55)-C(56)	139.0(8)	
Si(6)-C(61)	185.5(7)	Si(6)-C(62)	185.4(8)	
Si(6)-C(63)	185.3(5)			

TABELLE 11

BINDUNGSWINKEL (°) FÜR IIII

$\overline{N(2)-S(1)-N(6)}$	104.2(2)	S(1)-N(2)-B(3)	117.4(5)
S(1)-N(2)-C(21)	116.7(4)	B(3)-N(2)-C(21)	125.6(6)
N(2)-B(3)-S(4)	119.0(6)	N(2)-B(3)-C(31)	125.0(6)
S(4)-B(3)-C(31)	116.0(5)	B(3)-S(4)-B(5)	105.6(3)
S(4)-B(5)-N(6)	120.6(4)	S(4) - B(5) - C(51)	115.4(4)
N(6)-B(5)-C(51)	124.0(5)	S(1) - N(6) - B(5)	112.8(3)
S(1) - N(6) - Si(6)	113.9(2)	B(5) - N(6) - Si(6)	133.3(3)
N(2)-C(21)-C(22)	119.2(4)	N(2)-C(21)-C(26)	119.8(5)
C(22)-C(21)-C(26)	121.0(5)	C(21)-C(22)-C(23)	119.3(5)
C(21)-C(22)-C(27)	122.2(5)	C(23)-C(22)-C(27)	118.6(5)
C(22)-C(23)-C(24)	120.1(6)	C(23)-C(24)-C(25)	119.6(6)
C(24)-C(25)-C(26)	121.5(5)	C(21)-C(26)-C(25)	118.5(6)
C(21)-C(26)-C(28)	121.6(6)	C(25)-C(26)-C(28)	119.9(5)
B(3)-C(31)-C(32)	122.2(5)	B(3)-C(31)-C(36)	123.3(6)
C(32)-C(31)-C(36)	114.5(6)	C(31)-C(32)-C(33)	123.0(6)
C(32)-C(33)-C(34)	120.6(8)	C(33)-C(34)-C(35)	118.2(10)
C(34)-C(35)-C(36)	121.1(7)	C(31)-C(36)-C(35)	122.5(6)
B(5)-C(51)-C(52)	121.2(5)	B(5)-C(51)-C(56)	122.6(6)
C(52)-C(51)-C(56)	115.8(5)	C(51)-C(52)-C(53)	123.5(5)
C(52)-C(53)-C(54)	119.1(7)	C(53)-C(54)-C(55)	120.4(6)
C(54)-C(55)-C(56)	120.0(6)	C(51)-C(56)-C(55)	121.2(7)
N(6)-Si(6)-C(61)	109.6(3)	N(6)-Si(6)-C(62)	107.2(2)
C(61)-Si(6)-C(62)	110.0(3)	N(6)-Si(6)-C(63)	111.8(2)
C(61)-Si(6)-C(63)	107.5(3)	C(62)-Si(6)-C(63)	110.8(3)

Dank

Für die Förderung dieser Arbeit danken wir dem Fonds der Chemischen Industrie.

Literatur

- 1 C. Habben und A. Meller, Z. Naturforsch. B, 39 (1984) 1022.
- 2 A. Meller und C. Habben, Monatsh. Chem., 113 (1982) 139.
- 3 M. Noltemeyer, G.M. Sheldrick, C. Habben und A. Meller, Z. Naturforsch. B, 38 (1983) 1182.
- 4 D. Nölle, H. Nöth und T. Taeger, Chem. Ber., 110 (1977) 1643.
- 5 D. Nölle, H. Nöth und W. Winterstein, Chem. Ber., 111 (1968) 2465.
- 6 D. Nölle und H. Nöth, Z. Naturforsch. B, 27 (1972) 1425.
- 7 H.W. Roesky und B. Kuhtz, Chem. Ber., 107 (1974) 1.
- 8 W. Lidy, W. Sundermeyer und W. Verbeek, Z. Anorg. Allg. Chem., 406 (1974) 228.
- 9 H.W. Roesky, W. Schaper, W. Grosse-Böwing und M. Dietl, Z. Anorg. Allg. Chem., 416 (1975) 306.
- 10 H.W. Roesky, Angew. Chem., 91 (1979) 112.
- 11 W. Siebert, Chem. Ztg., 98 (1974) 479.
- 12 H. Fussstetter, H. Nöth, K. Peters, H.G. von Schnering und J.C. Huffmann, Chem. Ber., 113 (1980) 3881.
- 13 H. Nöth und R. Staudigl, Chem. Ber., 115 (1982) 813.
- 14 Gmelins Handb. d. Anorg. Chem., Bd. 51, Borverb. Teil 17, Springer-Verlag, Berlin, Heidelberg, New York, 1978.
- 15 H. Nöth, Z. Naturforsch. B, 38 (1983) 692.
- 16 W. Isenberg und R. Mews, Z. Naturforsch. B, 37 (1982) 1388.
- 17 E.M. Holt und S.L. Holt, J. Chem. Soc., Chem. Commun., (1973) 36.
- 18 Dissertation W. Isenberg, Universität Göttingen, 1984.
- 19 H.W. Roesky, S.K. Mehrotra und S. Pohl, Chem. Ber., 113 (1980) 2063.
- 20 P.C. Minshall und G.M. Sheldrick, Acta Cryst. B33 (1977) 160.
- 21 M. Schmidt und W. Siebert, Chem. Ber., 102 (1969) 2752.
- 22 J. Ruppert, U. Bastian und R. Appel, Chem. Ber., 108 (1975) 2329.
- 23 W. Haubold, H.G. Fehlinger und G. Frey, Z. Naturforsch. B, 36 (1981) 157.